

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ (ATEX / IECEx) GNExS2 и GNExS1 Огнестойкие звуковые оповещатели

1) Введение

GNExS2 и GNExS1 - огнестойкие звуковые оповещатели, которые сертифицированы в соответствии требованиям директивы АТЕХ 94/9 / ЕС и схемы ІЕСЕх. Оповещатели издают громкие предупреждающие сигналы и могут использоваться в опасных зонах, где может присутствовать потенциально атмосфера. При помони внутренних огнеопасная переключателей можно выбрать шестьдесят четыре звуковых сигнала различных уровней для самостоятельной настройки сигналов первого и второго уровней, третий и четвертый уровни изменяются извне (см. Таблицу сигналов на стр. 5/6). Устройство GNExS2 производит выходные уровни в диапазоне 117 дБ (A), а устройство GNExS1 производит выходные уровни в диапазоне 110 дБ (А).

Оповещатели относятся к группе II УЗО (уровень защиты оборудования) Gb. В зависимости от типа устройства и температуры окружающей среды оборудование сертифицируется как «Ex d IIC Gb» и может использоваться в зонах 1 и 2 с горючими газами и парами с группами приборов IIA, IIB и IIC и температурными классификациями T1, T2, T3 и T4 в зависимости от температуры окружающей среды, см. маркировочные коды в разделе 2.

Оборудование также сертифицировано «Ex d IIB Gb» и как таковое может использоваться в зонах 1 и 2 с легковоспламеняющимися газами и парами с группами оборудования IIA и IIB и температурными классификациями Т1, Т2, Т3, Т4, Т5 и Т6 в зависимости от температура окружающей среды, см. маркировочные коды в разделе 2.

2) Маркировка

У всех устройств есть паспортная табличка, которая содержит следующую важную информацию:-

№ типа устройства. GNExS2 or GNExS1

Bходное напряжение: GNExS1 GNExS2

10-30 B dc или 48 B dc 10-30 B dc или 48 B dc

100 – 260 B ac/dc 100 – 260 B ac

Коды: GNExS1

Ex d IIC T4 Gb для Ta ot -60° C до $+50^{\circ}$ C Ex d IIC T3 Gb для Ta ot -60° C до $+70^{\circ}$ C Ex d IIB T6 Gb для Ta ot -60° C до $+50^{\circ}$ C Ex d IIB T5 Gb для Ta ot -60° C до $+65^{\circ}$ C Ex d IIB T4 Gb для Ta ot -60° C до $+70^{\circ}$ C

Коды: GNExS2

Ex d IIC T4 Gb для Ta от -60° C до $+50^{\circ}$ C Ex d IIC T3 Gb для Ta от -60° C до $+58^{\circ}$ C Ex d IIB T6 Gb для Ta от -60° C до $+50^{\circ}$ C Ex d IIB T5 Gb для Ta от -60° C до $+58^{\circ}$ C

№ сертификата. SIRA 13ATEX1139X IECEx SIR 13.0029X

Эпсилон х: Группа оборудования и категория: (ξ_χ) 11 20

СЕ маркировка: № уполномоченной организации **(** € 0518

«Предупреждение»

НЕ ОТКРЫВАТЬ ПРИ ПИТАНИИ

НЕ ОТКРЫВАЙТЕ ВО ВЗРЫВООПАСНОЙ СРЕДЕ

ЭЛЕКТРОСТАТИЧЕСКАЯ ОПАСНОСТЬ - ОЧИЩАЙТЕ ТОЛЬКО ВЛАЖНОЙ ТКАНЬЮ

ЕСЛИ ТЕМПЕРАТУРА ПРЕВЫШАЕТ 70°С НА ВХОДЕ ИЛИ 80°С В ТОЧКЕ ПЕРЕХОДА, ИСПОЛЬЗУЙТЕ СООТВЕТСТВУЮЩИЕ КАБЕЛИ НОМИНАЛЬНОГО ТОКА И КАБЕЛЬНЫЕ ВВОДЫ

Год создания / Серийный №.

i.e. 13 / 1GS23000001

3) Сертификационные стандарты

Оповещатели имеют сертификат проверки типа EC и IECEх выданные KEMA и соответствуют следующим стандартам:

EN60079-0:2012 IEC60079-0:2011 (Ed6) Общие требования EN60079-1:2007 IEC60079-1:2007 (Ed6) Огнестойкий корпус 'd'

4) Особые условия безопасного использования

4.1) Установка

Звуковые оповещатели должны быть установлены в соответствии с новейшими выпусками соответствующих частей EN 60079 и IEC60079 стандарты - Выбор, установка и обслуживание электрическое оборудование для использования во взрывоопасных атмосферах (кроме горнодобывающей или взрывоопасной обработки и производства): -

EN60079-14:2008 Электроустановки в опасных зонах (Ed4) Зоны (кроме шахт) EN60079-10-1:2009 Классификация зон, газовая атмосфера IEC60079-10:2008 (Ed1)

Установка блоков также должна осуществляться в соответствии с любыми местными нормами, которые могут применяться, и должна выполняться только компетентным инженеромэлектриком, имеющим необходимое обучение

4.2) Особые условия

Запрещается каким-либо образом ремонтировать или модифицировать взрывонепроницаемые соединения. (Расположение взрывонепроницаемых соединений см. На рисунках 1 и 2)

Корпус непроводящий и при определенных экстремальных условиях может привести к воспламенению на уровне электростатическова заряд. Пользователь должен убедиться, что оборудование не установлено в месте, где оно может подвергается экстремальным условиям (например, при высоком давлении пара), что может вызвать накопление электростатического заряда на непроводящих поверхностях.

4.3) Техническое обслуживание, ремонт и капитальный ремонт

Техническое обслуживание, ремонт и капитальный ремонт оборудования должен быть выполнен только подходящим квалифицированным персоналом в соответствии с действующими стандартами:

(1)

Европейские системы безопасности Ltd. Impress House, Mansell Road, Acton, Лондон W3 7QH sales@e2s.com www.e2s.com www.e2s.com Факс: +44 (0)208 743 8880

Лист 1 of 5

Документ No. D157-00-001-RUS Дата 5 25-06-20

EN60079-19 / IEC60079-19 : Взрывоопасные среды - Ремонт, капитальный ремонт и утилизация оборудования. EN 60079-17/ IEC60079-17 : Взрывоопасные среды - Осмотр и обслуживание электроустановок

ПРЕДУПРЕЖДЕНИЕ: Не открывать под напряжением

Опасность электростатического заряда - протирать только влажной тканью.

Не открывайте во взрывоопасной атмосфере.

При открытии устройства во время операций по техническому обслуживанию необходимо поддерживать чистоту и удалить любой слой пыли перед открытием устройства.

По вопросам ремонта устройства или замены деталей обращайтесь в E2S, используя контактную информацию, указанную в нижнем колонтитуле этого руководства по установке.

5) Зональная, газовая, температурная категории и классификация

Оповещатели GNExS2 и GNExS1 были сертифицированы Ex d IIC T4, T3 и Ex d IIB T6, T5, T4 в зависимости от температуры окружающей среды. Для полной маркировки, см. Раздел 2. Это означает, что устройства могут быть установлены в местах в соответствии со следующими условиями:

Классификация областей:

Зона 1	Взрывоопасная воздушно-газовая смесь может
	возникать при нормальной работе.
3она 2	Взрывоопасная воздушно-газовая смесь вряд ли возникнет, но если это произойдет, то она будет существовать лишь недолго.
	гоуществевать лишь педелне.

Газовые группы:

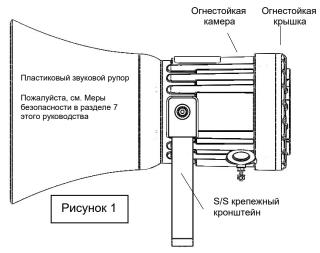
Группа IIA	пропан
Группа IIB	этилен
Группа IIC	водород и ацетилен

Категория оборудования: 2G

Классификация температуры:

T1	450° C
T2	300° C
T3	200° C
T4	135° C
T5	100 ° C
T6	85 ° C

Диапазон температуры окружающей среды:

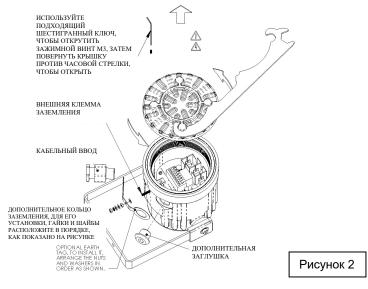

GNExS1 - Для определения диапазона смотрите маркировочные коды в разделе 2

GNExS2 - Для определения диапазона смотрите маркировочные коды в разделе 2

6) Расположение и монтаж оповещателя

Расположение звуковых оповещателей должно быть рассчитано с учетом зоны, в которой должен быть слышен предупреждающий сигнал. Звуковые оповещатели должны быть закреплены только в тех местах, которые могут нести вес устройства.

Оповещатели должны быть надежно прикреплены болтами к подходящей поверхности с помощью отверстий диаметром 7 мм в U-образном монтажном кронштейне из нержавеющей стали (см. Рисунок 1). Затем угол можно отрегулировать в направлении, в котором в первую очередь требуется звуковое покрытие. Это может быть достигнуто путем ослабления двух больших крепежных винтов на боковой стороне устройства, которые позволяют осуществлять регулировку с шагом 18°. По завершении установки два больших регулировочных винта кронштейна на боковой стороне устройства должны быть полностью затянуты, чтобы обеспечить надежное фикцирование в процессе эксплуатации.



7) Меры безопасности (электростатическая опасность)

Звуковая часть рупора изготовлена из АБС-пластика. Поэтому во избежание ЭЛЕКТРОСТАКТИЧЕСКОГО ЗАРЯДА устройство следует чистить только влажной тканью.

8) Доступ к огнестойкому корпусу

Для подключения кабелей электропитания к оповещателю необходимо снять огнестойкую крышку, чтобы получить доступ к камере. Далее следует ослабить потайной винт МЗ внутри огнестойкой крышки. Затем, с особой осторожностью отвинтить ее, чтобы в процессе не повредить огнестойкие соединения.

Европейские системы безопасности Ltd. Impress House, Mansell Road, Acton, Лондон W3 7QH

sales@e2s.com www.e2s.com

Тел: +44 (0)208 743 8880 Факс: +44 (0)208 740 4200 По завершении монтажа кабельной проводки следует проверить огнестойкие соединения на предмет чистоты и отсутствия Также убедитесь, что повреждений во время монтажа. уплотнительное кольцо установлено на место. При замене огнестойкой крышки убедитесь, что она полностью затянута с помощью прилагаемого инструмента.

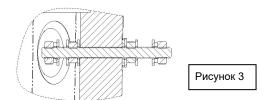
9) Выбор источника питания

Важно чтобы для работы оповещателей использовался подходящий источник питания. Выбранный источник питания должен иметь необходимую мощность для подачи входного тока на все оповещатели, подключенные к системе.

В следующей таблице показан входной ток, принимаемый различными устройствами оповещения:

Тип	Входное	Входной	і Макс.
устройства	напряжение	ток	І/Р Вольт
GNExS2	12B DC	683мА	30B
GNExS2	24B DC	811мА	30B
GNExS2	48B DC	434мА	58B
GNExS2	230B AC	196мА	260B
GNExS2	115B AC	297мА	260B
GNExS1	12B DC	120мА	30B
GNExS1	24B DC	140мА	30B
GNExS1	48B DC	73мА	58B
GNExS1	230B AC	75мА	260B
GNExS1	115B AC	86мА	260B

Входной ток будет варьироваться в зависимости от уровня входного напряжения и частоты выбранного сигнала. Уровни тока, показанные выше, предназначены для непрерывного сигнала 440 Гц при номинальном входном напряжении. Приведенная выше таблица также показывает максимальные напряжения, при которых могут работать оповещатели.


10) Выбор кабеля

При выборе размера кабеля необходимо учитывать входной ток, который потребляет каждое устройство (см. Таблицу 2 из 4), количество оповещателей на линии и длину кабеля. Выбранный размер кабеля должен иметь необходимую пропускную способность для подачи входного тока на все оповещатели, подключенные к линии.

МЕРЫ БЕЗОПАСНОСТИ: Если температура на входе превышает 70° C или 80° C в точке разветвления, используйте кабель и кабельные вводы соответствующего сечения.

Заземление

Оповещатели переменного и постоянного тока должны быть подключены к заземлению хорошего качества. Устройства снабжены внешними клеммами заземления, которые расположены в секции клеммной камеры устройств (см. Рисунки 2 и 3).

При использовании внешней клеммы заземления необходимо использовать кабельный наконечник. Кабельный наконечник должен быть расположен между двумя плоскими шайбами из нержавеющей стали М4. Пружинная шайба из нержавеющей

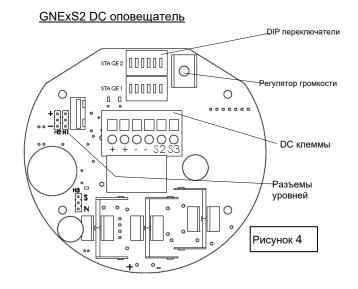
стали М4 должна быть закреплена между внешней плоской шайбой и гайкой из нержавеющей стали М4, чтобы обеспечить надежное крепление кабельного наконечника от ослабления и перекручивания.

12) Кабельные вводы

Оповещатели GNExS2 и GNExS2 оснащены двойными кабельными вводами, которые имеют входную резьбу М20 х1,5 в качестве стандартной. Могут использоваться только кабельные вводы, одобренные для применений Ex 'd', которые должны соответствовать типу используемого кабеля, а также соответствовать требованиям стандартов огнестойкой установки Ex 'd' EN 60079-14: 2008 / IEC60079-14: 2007.

МЕРЫ БЕЗОПАСНОСТИ: Если температура на входе превышает 70° C или 80° C в точке разветвления, используйте кабель и кабельные вводы соответствующего сечения.

Если требуется высокая степень защиты ЗП (защита от проникновения пыли и влаги), то под кабельный ввод должна быть установлена подходящая уплотнительная шайба.


Если используется только один кабельный ввод, то другой должен быть закрыт огнестойкой заглушкой Ex 'd', которая должна быть надлежащим образом утверждена в соответствии с требованиями к установке.

13) Cable Connections

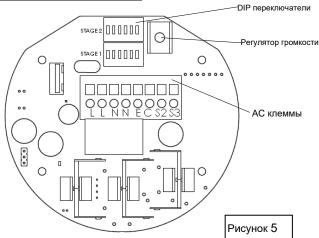
Кабельные соединения устанавливаются в клеммные колодки на электронной плате с печатной схемой, расположенной в огнестойком корпусе. См. Раздел 8 данного руководства для доступа к огнестойкому корпусу.

устройствах переменного тока предусмотрена восьмипозиционная клеммная колодка для проводов питания под напряжением (х2), нейтрали (х2) и заземления. А также общая клемма (C) соединяющая вторую (S2) и третью (S3) ступени (см. Рисунки 5 и 6).

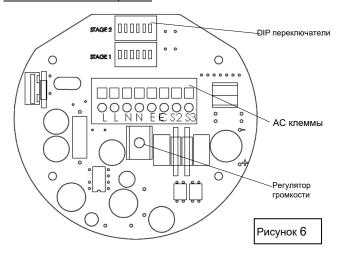
устройствах постоянного тока предусмотрена шестипозиционная клеммная колодка для режимов входа + ve (x2) и -ve (x2) и режима работы второй (S2) и третьей (S3) ступени (см. Рисунки 4 и 7).

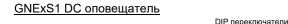
Европейские системы безопасности Ltd. Impress House, Mansell Road, Acton, Лондон W3 7QH

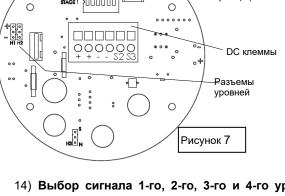
sales@e2s.com Тел: +44 (0)208 743 8880 Факс: +44 (0)208 740 4200


www.e2s.com

Документ No. D157-00-001-RUS Дата 5 25-06-20 Лист 3 of 5


Одиночный одножильный или многожильный провод с площадью поперечного сечения до 4 мм² могут подключены к каждому пути вывода или если требуется входной и выходной провод. Два провода 2,5 мм² могут быть подключены к каждому контактному разъему. При подключении проводов к клеммам следует соблюдать особую осторожность, чтобы одеть провод так, чтобы при вставке крышки в камеру провода не оказывать избыточного давления на клеммные колодки. Это особенно важно при использовании кабелей с большой площадью поперечного сечения, например, 2,5 мм² и выше.


Изоляцию провода нужно зачистить на 6-7 мм. Провода могут быть надежно закреплены с гофрированными наконечниками. Клеммные винты необходимо затягивать с моментом затяжки 0,56 Нм / 5 фунтов на дюйм.


GNExS2 AC оповещатель

GNExS1 AC оповещатель

000000

}000000

14) Выбор сигнала 1-го, 2-го, 3-го и 4-го уровня тревоги

Регулятор громкости

Оповещатели GNExS2 и GNExS1 имеют 64 разных сигнала, которые можно выбирать независимо для первого или второго уровня тревоги. После этого можно включить звуковые оповещатели для подачи сигналов тревоги второго, третьего и четвертого уровней. Сигналы выбираются с помощью двух DIPпереключателей на печатной плате для устройств постоянного и переменного тока. В таблице сигналов на странице четыре показаны положения переключателей для 64 сигналов и сигналы, доступные для третьего и четвертого уровней.

Действия для первого уровня (S1): просто подключите напряжение питания к клеммам нормального питания (+ ve и -ve для устройств постоянного тока, L и N для устройств переменного тока). DIР-переключатель 1 изменяет сигнал первого уровня.

Работа для второго, третьего и четвертого уровней отличается для устройств постоянного и переменного тока, но клеммы питания первого уровня также должны быть подключены.

Выбор сигналов для второго, третьего и четвертого уровней для устройств постоянного тока

Для изменения сигналов второго, третьего и четвертого уровней в звуковых оповещателях GNExS2 и GNExS1 DC могут использоваться переключения +ve или -ve. Для переключения ve подключите два разъема на печатной плате к левому (отмечен -ve) и центральному контактам. Для переключения + ve подключите разъемы к правому (обозначены + ve) и центральному контактам.

Действия для второго уровня (S2): Подключить + ve или -ve, в зависимости от того, какой режим переключения соединяет линию питания -ve или + ve с клеммой S2. DIP-переключатель 2 изменяет сигнал второго уровня.

Действия для третьего уровня (S3): Подключить + ve или –ve, в зависимости от того, какой режим переключения соединяет линию питания -ve или + ve с клеммой S3. DIP-переключатель 1 изменяет сигнал третьего уровня.

Действия для четвертого уровня (S4): Подключить + ve и –ve, в зависимости от того, какой режим переключения соединяет линию питания -ve или + ve с обоими клеммами S2 и S3. DIPпереключатель 1 изменяет сигнал четвертого уровня.

Выбор сигналов для второго, третьего и четвертого уровней для GNEx S2 переменного тока

Для выбора сигналов второго, третьего и четвертого уровня на на оповещателях GNExS2 AC.

Действия для второго уровня (S2): подключить L и N, соединить общую клемму (C) и S2. DIP-переключатель 2 изменяет сигнал второго уровня.

Действия для третьего уровня (S3): подключить L и N, соединить общие (C) и S3 клеммы. DIP-переключатель 1 DIP-переключатель 1 изменяет сигнал третьего уровня.

Действия для четвертого уровня (S4): подключить L и N, соединить общие (C) клеммы S2 и S3. DIP-переключатель 1 изменяет сигнал четвертого уровня.

Выбор сигналов для второго, третьего и четвертого уровней для GNEx S1 переменного тока

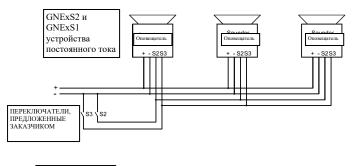
ПЕРЕКЛ

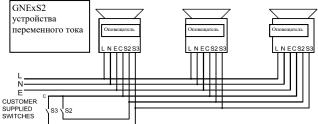
Для выбора сигналов второго, третьего и четвертого уровня на на оповещателях GNExS1 AC.

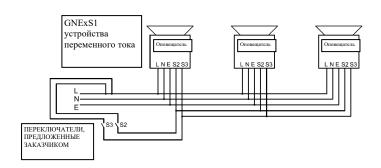
Действия для второго уровня (S2): Подключить L и N, соединить клеммы L и S2. DIP-переключатель 2 изменяет сигнал второго уровня.

Действия для третьего уровня (S3): Подключить L и N, соединить клеммы L и S3. DIP-переключатель 1 изменяет сигнал третьего уровня.

Действия для четвертого уровня (S4): Подключить L и N, соединить L и клеммы S2 и S3. DIP-переключатель 1 изменяет сигнал четвертого уровня.


15) Регулятор громкости


Все звуковые оповещатели GNExS2 и GNExS1 имеют регулятор громкости для регулировки уровня выходного сигнала. Чтобы установить необходимый уровень выходного сигнала, отрегулируйте потенциометр на печатной плате. Для максимального выходного уровня потенциометр должен быть установлен в положение по часовой стрелке до упора.


16) Контроль окончания линии (устройства постоянного тока)

На устройствах постоянного тока GNExS2 и GNExS1 при необходимости можно использовать контроль обратной линии постоянного тока. Все датчики постоянного тока имеют блокирующий диод, установленный в их входных линиях питания. Диод контроля окончания линии или резистор контроля окончания линии можно подключить к клеммам + ve и –ve. Если используется резистор на конце линии, он должен иметь минимальное значение сопротивления 3к3 Ом и минимальную мощность 0,5 Вт или минимальное значение сопротивления 500 Ом и мин. мощность 2 Вт.

Схема подключения Е

Выбор сигнала - для выбора необходимого сигнала первой уровня установите DIP-переключатель 1 (6-позиционный DIP-режим, см. Рис. 3) на требуемую настройку сигнала, показанную в таблице ниже. В таблице также показано, что сигнал второго уровня можно установить самостоятельно с помощью DIP-переключателя 2-го уровня, чтобы выбрать нужный сигнал. Сигналы 3-го и 4-го уровней доступны, если требуется более двух выходных уровней. Они устанавливаются / связываются с помощью выбора сигналов первого уровня.

Уровень 1 Установка DIP- переключателя 1, №	Описание сигнала	Изображение сигнала	Уровень 1 и 2 Настройки DIP- переключателя 1 2 3 4 5 6	Уровень 2 Установить DIP- переключатель 2 (S2)	Уровень 3 Установить DIP- переключатель 1 (S3)	Уровень 4 Установить DIP- переключатель 1 (S2 + S3)
1	1000 Гц ПППВС токсичный газ	1000Гц	000000	1	2	44
2	1200/500 Гц @ 1Гц DIN / ПППВС Р.Т.А.Р.	1200Γ _{II}	100000	2	3	44
3	1000Гц @ 0.5Гц (1s вкл., 1s выкл.) ПППВС Общая тревога	1000Hz 1s	010000	3	2	44
4	1.4КГц -1.6КГц 1s, 1.6КГц -1.4КГц 0.5с NF C 48-265	1600Hz 0.5s	1 1 0 0 0 0	4	24	1
5	544Гц (100мс)/440Гц (400мс) NF S 32-001	544Hz 0.1s 440Hz 0.4s	001000	5	19	1
6	1500/500Гц - (0.5с вкл., 0.5s выкл.) х3 + 1s интервал AS4428	1500Hz 0.5s 0.5s 0.5s 0.5s 1.5s	101000	6	44	1
7	500-1500Гц быстрый 2 сек вкл.1 сек выкл. AS4428	1500Hz 2s 1s	011000	7	44	1
8	500/1200Гц @ 0.26Гц (3.3с вкл., 0.5с выкл.) Нидерланды - NEN 2575	1200Hz 500Hz 3.3s 0.5s	111000	8	24	35
9	1000Гц (1s вкл., 1s выкл.)х7 + (7s вкл., 1s выкл.) Код ИМО 1a	1000Hz [1s] [1s] [1s] [1s] [1s] [7s] [-	000100	9	34	1
10	1000Гц (1s вкл., 1s выкл.)х7 + (7s вкл., 1s выкл.) Код ИМО 1a		100100	10	34	1
11	420Гц (0.5с вкл., 0.5с выкл.)х3 + 1s интервал ISO 8201 Временная структура	420Hz 0.5s 0.5s 0.5s 0.5s 1.5s	010100	11	1	8
12	1000Гц (0.5s вкл., 0.5s выкл.)х3 + 1s прерывистый ISO 8201 Временная структура	1000Hz 0.5s 0.5s 0.5s 0.5s 1.5s	110100	12	1	8

Европейские системы безопасности Ltd. Impress House, Mansell Road, Acton, Лондон W3 7QH

sales@e2s.com www.e2s.com Тел: +44 (0)208 743 8880 Факс: +44 (0)208 740 4200

13	422/775Гц - (0.85 вкл., 0.5 выкл.) х3 + 1s интервал NFPA - Временная кодировка	775Hz 422Hz 0.85s 0.5s 0.85s 0.5s 0.85s 1.5s	001100	13	1	8
14	1000/2000Гц @ 1Гц Сингапур	2000Hz 1000Hz 1s	101100	14	3	35
15	300Гц Непрерывный	300Гц ———	011100	15	24	35
16	440Гц Непрерывный	440Γιι ————	111100	16	24	35
17	470Гц Непрерывный	470Γιι ————	000010	17	24	35
18	500Гц Непрерывный Код ИМО 2 (низкий)	500Гц ———	100010	18	24	35
19	554Гц Непрерывный	554Гц	010010	19	24	35
20	660Гц Непрерывный	660Гц ————	110010	20	24	35
21	800Гц Код ИМО 2 (высокий)	800Γ _{II} ————	001010	21	24	35
22	1200Гц Непрерывный	1200Γμ ———	101010	22	24	35
23	2000Гц Непрерывный	2000Гц	011010	23	3	35
24	2400Гц Непрерывный	2400Γμ ————	111010	24	20	35
25	440 @0.83Гц (50 циклов / минуту) прерывистый	440Hz 0.6s 0.6s	000110	25	44	8
26	470 @0.9Гц - 1.1s прерывистый	470Hz 0.55s 0.55s	100110	26	44	8
27	470Гц @5Гц - (5 циклов / секунду)	470Hz 0.1s 0.1s	010110	27	44	8
28	прерывистый 544Гц @ 1.14Гц - 0.875с прерывистый	470Hz 0.43s 0.44s	110110	28	24	8
29	655Гц @ 0.875Гц прерывистый	655Hz 0.57s 0.57s	001110	29	44	8
30	660Гц @0.28Гц - 1.8 сек оп, 1.8 сек выкл	660Hz 1.8s	101110	30	24	8
31	прерывистый 660Гц @3.34Гц - 150мс on, 150мс выкл.	1.8s 660Hz 0.15s	011110	31	24	8
32	прерывистый 745Гц @ 1Гц	745Hz 0.5s	111110	32	24	8
33	прерывистый 800Гц - 0.25сек on, 1 сек выкл.	0.5s 800Hz 0.25s	0 0 0 0 0 1	33	24	8
	прерывистый 800Гц @ 2Гц IMO	1s 800Hz 0.25s				
34	соde 3.a (высокий) прерывистый 1000Гц @ 1Гц	0.25s	100001	34	24	8
35	прерывистый	2400Hz 0.5s	0 1 0 0 0 1	35	24	8
36	2400Гц @ 1Гц прерывистый	0.5s	1 1 0 0 0 1	36	24	8
37	2900Гц @ 5Гц прерывистый	2900Hz 0.1s 0.1s	001001	37	24	8
38	363/518Гц @ 1Гц переменный	518Hz 0.5s 0.5s	101001	38	8	19
39	450/500Гц @ 2Гц переменный	500Hz 0.25s 450Hz 0.25s	011001	39	8	19
40	554/440Гц @ 1Гц переменный	554Hz 0.5s 0.5s	111001	40	24	19
41	554/440Гц @ 0.625Гц переменный	554Hz 0.8s	000101	41	8	19
42	561/760Гц @0.83Гц (50 циклов/минуту)	760Hz 0.6s 0.6s	100101	42	8	19
43	переменный 780/600Гц @ 0.96Гц	561Hz 0.6s 780Hz 0.52s	010101	43	8	19
	переменный 800/1000Гц @ 2Гц	600Hz 0.52s 1000Hz 0.25s				
44	переменный 970/800Гц @ 2Гц	800Hz 0.25s 970Hz 0.25s	110101	44	24	19
45	переменный	800Hz 0.25s	001101	45	8	19
46	800/1000Гц @ 0.875Гц переменный	1000Hz 800Hz 0.57s 0.57s	101101	46	24	19

1	1		1		1	1
47	2400/2900Гц @ 2Гц переменный	2900Hz 0.25s 0.25s	011101	47	24	19
48	500/1200Гц @ 0.3Гц быстрый	1200Hz 500Hz 3.34s	111101	48	24	12
49	560/1055Гц @ 0.18Гц Sweeping	1055Hz 560Hz 5.47s	000011	49	24	12
50	560/1055Гц @ 3.3Гц быстрый	1055Hz 560Hz 0.3s	100011	50	24	12
51	600/1250Гц @ 0.125Гц быстрый	1250Hz 600Hz 8s	010011	51	24	12
52	660/1200Гц @ 1Гц быстрый	1200Hz 660Hz 1s	110011	52	24	12
53	800/1000Гц @ 1Гц быстрый	1000Hz 800Hz 1s	001011	53	24	12
54	800/1000Гц @ 7Гц быстрый	1000Hz 800Hz 0.14s	101011	54	24	12
55	800/1000Гц @ 50Гц быстрый	1000Hz 800Hz 0.02s	011011	55	24	12
56	2400/2900Гц @ 7Гц быстрый	2900Hz 2400Hz 0,14s	111011	56	24	12
57	2400/2900Гц @ 1Гц быстрый	2900Hz 2400Hz 1s	000111	57	24	12
58	2400/2900Гц @ 50Гц быстрый	2900Hz 2400Hz 0.02s	100111	58	24	12
59	2500/3000Гц @ 2Гц быстрый	3000Hz 2500Hz 0.5s	010111	59	24	12
60	2500/3000Гц @ 7.7Гц быстрый	3000Hz 2500Hz 0.13s	110111	60	24	12
61	800Гц Моторная сирена	800Hz 1.6s	001111	61	24	12
62	1200Гц Моторная сирена	1200Hz 2s	101111	62	24	12
63	2400Гц Моторная сирена	2400Hz 1.7s	011111	63	24	12
64	Имитация колокола	1450Hz 0.25s	111111	64	21	12

sales@e2s.com www.e2s.com